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Abstract:  Foundation Models (FMs) have unveiled a new phase in the 
Artificial Intelligence (AI) era, characterized by significantly larger datasets 
and massive computational power. This analysis examines the applicability of 
FMs in the healthcare sector and how their advanced functionalities, such as 
in-context learning, can enhance overall organizational performance by 
increasing efficiency, accuracy, and predictability. However, scholarly works 
over the past decade have primarily focused on the implications of AI’s 
pervasive application in society, and there remains a critical need to deepen 
the discussion on AI governance, particularly in the healthcare domain. The 
rapid advancement of AI models, combined with insufficient regulatory 
oversight, poses significant risks to patients and Healthcare Organizations 
(HCOs), including privacy breaches, adversarial attacks, model opacity, and 
algorithmic biases. To address these risks, this paper calls for the promotion 
of a three-layer governance structure for HCOs based on the hourglass model 
for AI governance by Mäntymäki et al. (2022). 

Introduction 

The rise of Generative Artificial Intelligence (AI) is quickly shaping the Fourth Industrial 
Revolution. AI’s computational prowess and advanced algorithmic capabilities have ushered 
in an era never seen in history while presenting new challenges in navigating the intricate 
play between machine intelligence and human existence. Recently, there has been a surge in 
popularity with the use of Large Language Models (LLMs) such as the Generative Pre-
Trained Transformer (GPT). LLM is a significant advancement in Natural Language 
Processing (NLP), a subset of AI explicitly focusing on a computer’s ability to comprehend 
text and spoken words like humans. NLP has revolutionized digital technology through its 
contributions, such as chatbots, virtual assistants, and language translation. However, the 
emergence of LLMs and their ability to train on large amounts of data significantly enhances 
current NLP features by providing contextually relevant texts based on memory. In 
healthcare, the profound benefits of these models offer an innovative solution to 
longstanding problems in care delivery.  
Notably, the rapid rate at which technological innovations have permeated society 
characterizes the reduction in the lag of momentous technological advancements in the 
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twentieth century. For instance, it took more than 200 years from when the steam engine 
was developed to when Henry Ford built the first car, while it only took less than 50 years 
from the first call on a wireless handheld device to the development of smartphones with 
embedded AI technology (Makridakis, 2017). The same pattern can be observed in 
ChatGPT’s latest LLM GPT-4 release, less than a year after its previous groundbreaking 
iteration (GPT-3) went public in 2022. Subsequently, many renowned names who hold 
pragmatic views of the technology, including Tesla CEO Elon Musk, warn about AI’s 
“profound risk to society and humanity” and call for a halt on AI training for at least six 
months (Future of Life Institute, 2023). Geoffrey Hinton, widely known for his works in deep 
learning and neural networks, also warns about the dangers of AI and calls for urgent 
investment in AI safety and control (Kleinman & Vallance, 2023). This significant challenge 
in technological shifts mirrors the inability of governance initiatives to keep up with rapid 
innovative advancements. For this reason, the World Economic Forum published a white 
paper articulating that reliance on government legislation regarding rapidly advancing 
technology is ill-advised as it is likely to be outdated before implementation (2016).  

Over the past decade, numerous studies have predicted and outlined the effects of 
widespread AI use in society; however, the specific focus on AI governance needs to be 
expanded in the literature, especially in healthcare. This essay will answer two fundamental 
research questions: What are the inherent risks of an AI-driven healthcare organization 
(HCO), and how can HCOs appropriately respond to these risks? The paper will identify four 
potential implementation risks associated with Foundation Models (FMs) in the healthcare 
landscape and call to promote a three-layer governance structure guided by the principles 
of ethical AI and applicable regulations.     

Foundation Models: The Key To AI-Driven HCOs 

“Foundation Models” or FMs is a term coined in 2021 by the Stanford Institute for Human-
Centered Artificial Intelligence (HAI) (Bommasani et al.,2021). Bommasani et al. define the 
term as “any model that can be trained on broad data,” adapted, or fine-tuned to a wide range 
of downstream tasks. The Center for Research on Foundation Models (CRFM) simplifies the 
definition: train a single model on a vast dataset and customize it for various applications 
(n.d.). Notable examples of FMs in deployment include LLMs like GPT-3. While LLMs are 
tasked explicitly with generating and interpreting human-like texts, FMs generally have a 
broader application by integrating multiple modalities (text, images, videos, etc.) across 
different models with specific tasks or purposes. This training process is illustrated below:  

Fig.1 Foundation Model Framework 
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FMs are rooted in the principles of Artificial Neural Networks (ANNs) and Self-Supervised 
Learning (SSL), both concepts that have existed for decades (Bommasani et al., 2021). ANNs 
are systems consisting of artificial neurons, organized in layers, that mirror the behaviors 
and functions of the human brain. On the other hand, SSL is a type of learning wherein the 
data “supervises itself for training the model” and instructs its network on what is right or 
wrong (Rani et al., 2023, p. 2761). The principle behind SSL was derived from how infants 
learn through observation with little interaction with their surroundings (Rani et al., 2023). 
Further, since SSL works on unlabeled data, it virtually eliminates the time-consuming and 
often costly manual annotation of data. However, what makes FMs so fundamentally 
powerful compared to other AI models is their ability to simultaneously apply the principles 
of ANNs and SSL at a much larger scale, often measured in parameters. A model’s parameter 
correlates with its ability to discern complex patterns from the data; thus, the greater the 
parameters, the more it yields superior outputs. For example, GPT-3 has a scale of 175 billion 
parameters or nearly 45 terabytes of text data (Broadhead, 2023). While training data for 
GPT-3 is currently not publicized, it is estimated that the model was trained on 500 billion 
words from the internet (The Alan Turing Institute, 2023). GPT-3’s previous iteration (GPT-
2), released in 2019, only had 1.5 billion parameters.  

The swift progress in scale can be linked to the exponential growth of computational power, 
also known as “compute,” accessible for training datasets. The compute consumption in 
LLMs like GPT-3 is measured in petaFLOPS-days—the number of computations performed 
in one day by a computer calculating a thousand trillion computations per second (Power, 
2022). GPT-3 required 3,640 petaFLOPS-days to train. A standard laptop would take several 
thousand years to reach the same number of computations used in training GPT-3. A 2012 
paper highlighting an image classification architecture popularly known as “AlexNet” 
demonstrated how increased computing power can lead to superior results (Krizhevsky et 
al.,2012). The model in the study outperformed human-level accuracy in image recognition 
by simply increasing computing power in training a convolutional neural network. These 
findings led researchers to believe that increasing compute in training top models would 
lead to better performances, subsequently resulting in a significant rise in computing 
demands (Power, 2022). From 1959 to 2012, computing power generally doubled every two 
years; however, since the 2012 study, computing power has doubled every three and a half 
months (OpenAI, 2018).   

In healthcare, applications of AI models have historically been isolated to high-level 
predictive capabilities of Deep Learning (DL) algorithms for single-purpose tasks such as 
enhancing image analysis to recognize potentially cancerous lesions in radiology (Fakoor et 
al., 2013) or risk scoring models such as predicting congestive heart failure (CHF) and 
chronic obstructive pulmonary disease (COPD) based on clinical data (Cheng et al., 2016). 
With the advent of FMs, the applications of AI in healthcare now also include advanced 
functionalities such as in-context learning—the ability to learn from a few examples in the 
context through analogy (Dong et al., 2022). Fig. 2 visualizes the application of an FM in a 
healthcare organization. The data is extracted from multidisciplinary sources in care 
delivery that include both clinical and non-clinical stakeholders. The data gathered will 
generate multimodal inputs such as clinical notes, diagnostic history, or key performance 
indicators (KPIs), including financial and operational margins. The foundation model will be 
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trained on this data to be applied to several downstream tasks in the health system, such as 
personalized medicine and context-based chatbots for the patient, efficient assistive tools in 
diagnosis and treatment for the providers, and analytics dashboards that will aid 
administrators in making informed decisions based on accurate real-time data across 
various organizational functions. Previous research has also proposed a comprehensive 
application of DL techniques in healthcare organizations similar to the functionalities of an 
FM (Miotto et al., 2018). However, the study suggested models that must be constantly 
updated to follow the changes in patient populations, which can be labor-intensive and 
expensive. FMs do not focus on specific tasks as they capture a wide range of knowledge from 
broad organizational data, thereby eliminating the need to train other models in the system 
from scratch.  

Fig.2 Foundation Model Application in Healthcare (Adapted from Bommasani et al.,2021) 

Risks 

As FM discussions continue to integrate into healthcare, it becomes imperative to 
understand the inherent risks posed by implementing them in the healthcare workflow, 
including privacy, security, explainability, and fairness. 

The HIPAA Privacy Rule in the Age of AI 

Given the magnitude of the datasets required to train AI systems, it is no surprise that the 
safeguarding and privacy of data have constituted focal points in most AI legal challenges. 
AI’s hunger for massive amounts of information and healthcare’s highly regulated 
landscape will make it challenging to coordinate the exchange of health information 
between HCOs and AI developers. In a 2019 class action lawsuit, a patient sued Google and 
the University of Chicago Medical Center for alleged disclosure of medical information of 
nearly every patient from the hospital system without removing detailed time stamps and 
clinical notes. Google assured that data were de-identified, which the plaintiff claimed to be 
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highly misleading, citing Google’s tremendous data mining capabilities make them 
“uniquely able to determine the identity of almost every medical record the University 
released” (Dinnerstein v. Google, 2019). Dinnerstein v. Google raised questions about 
whether complete anonymization of data can be actually achieved, especially with the 
cross-linking capabilities of modern technology. Previous research has demonstrated 
compromised anonymity in genomic studies where anonymous participants can be 
identified by analyzing Y-chromosome sequences from public genealogy websites 
containing their distant relatives’ surnames (Gymrek et al., 2013). Another study evaluated 
an algorithm’s ability to re-identify thousands of physical activity data in wearable devices 
that have de-identified health information and found that the algorithm successfully re-
identified more than 80% of the demographic (Na et al., 2018). The Dinnerstein case 
suggests that current anonymization practices do not prevent large digital companies from 
cross-linking geographical coordinates of Google users and their exact dates and times of 
arrival and departure from specific locations to timestamps in the health record, 
identifying anonymous patients by name, physical and email addresses, duration of 
encounter, etc. (Dinnerstein v. Google, 2019).  

The Health Insurance Portability and Accountability Act (HIPAA) authorizes the disclosure 
of de-identified medical records by third parties as long as there is a low risk that 
information could be used “by an anticipated recipient to identify an individual who is a 
subject of the information” (Standards for Privacy of Individually Identifiable Health 
Information, 2000). However, technological progress at the time of the rule’s passing 
significantly pales in comparison to the vast scale of technology adoption we are witnessing 
today. Cohen and Mello discussed the implications of the outdated privacy law and its 
ineffectiveness in addressing data challenges, calling for a reassessment of data-sharing 
governance in the 21st century (2019). Data experts have also proposed techniques to 
virtually eliminate privacy risks, such as using synthetic data with simulated datasets 
(Gaffney, 2023), while others have taken a much broader approach, shifting the discussion 
toward data ownership by analyzing patient health information within the intellectual 
property framework (Liddell et al., 2021). 

Security Risks: Adversarial Reprogramming, Overlearning, and Centralization 

The vulnerabilities associated with FMs extend far beyond data-related concerns. Security 
threats can emerge from adversarial access to the model itself. As advanced technology 
progresses, it also brings about a continued evolution of cybersecurity attacks, frequently 
targeting high-value subjects such as the healthcare industry through ransomware (Kiser & 
Maniam, 2021). However, the broad spectrum of AI capabilities introduces new pathways 
for cyber threats to infiltrate systems that can directly affect the clinical workflow. Thus, 
the deployment of FMs in HCOs and the healthcare industry must be thoroughly assessed 
by administrators and regulatory leaders, with a specific emphasis on the unique clinical 
harm they pose to patients. Due to its infancy, the limited literature on FMs has yet to 
uncover its full potential, rendering any current deployment more akin to prototypes 
rather than fully-developed implementations. 
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One common security flaw in AI models is adversarial reprogramming, where a model is 
repurposed to perform a new task chosen by an attacker, even if the model was not trained 
for the task (Elsayed et al., 2018). These attacks are incredibly parasitic in nature as they 
influence a model’s functionality rather than its hardcoded output. For instance, Chu et al. 
outlined the potential dangers of external adversarial networks that can artificially modify 
imaging results (output) in radiology (2020). In adversarial reprogramming, which is 
naturally internal, an attacker would not have to modify an output since the model itself 
has been repurposed to produce flawed imaging results (such as modifying the lesion size, 
location, etc.) without the knowledge of its developers or users. This has tremendous 
implications for clinical decision-making as attacks could potentially result in misdiagnoses 
of abnormalities and life-threatening conditions.  

Another security threat to FMs is overlearning. Song and Shmatikov define the term as a 
phenomenon where “representations learned by deep models when training for seemingly 
simple objectives reveal privacy- and bias-sensitive attributes that are not part of the 
specified objective” (2020). In a healthcare implementation, overlearning specifically 
concerns the amount of sensitive information that can be accessed or disclosed by covered 
entities under HIPAA. While the Privacy Rule allows the disclosure and use of health 
information, it also effectively excludes records that are subject to the Family Educational 
Rights and Privacy Act (FERPA), including “employment records that a covered entity 
maintains in its capacity as an employer and [an educational institution]” (Standards for 
Privacy of Individually Identifiable Health Information, 2000). The overlearning tendency 
of FMs can potentially de-censor these excluded records by enabling the recognition of 
sensitive information even if it is not present in the training data. Song and Shmatikov 
highlighted the inadequacy of privacy protection technologies and the regulations that 
govern them since there are currently no known techniques to censor these “overlearned 
attributes” (2020). 

This analysis has previously discussed the ability of FMs to homogenize the methodologies 
adapted to downstream applications. Consequently, this inherent centralization can also 
represent a single point of failure for all downstream tasks (Bommasani et al., 2021). In 
essence, previously discussed privacy and security risks where adversaries influence either 
the model or the data can impact not only one single-purpose task but all downstream 
tasks in the model. Carlini et al. found that LLMs that have been trained on private datasets 
can be infiltrated by adversaries to extract private information (2021). This means that 
FMs that are trained on organizational data run the risk of exposing their private data on all 
downstream applications for adversarial attacks, including model stealing. A more recent 
and prominent example of such an incident is the model leak of Facebook’s “LLaMa” (Large 
Language Model Meta AI) in early 2023 (Cox). 

Interpretable AI and Clinician Trust 

The intricate internal workings of AI models have frequently led them to be widely 
considered as black box models. A black box model can be either a function that is too 
complex for human intelligence to comprehend or a function that is proprietary (Rudin, 
2019). The ability of FMs to train on a vast amount of complex data enables them to 
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potentially “do unforeseen tasks and do these tasks in unforeseen ways” (Bommasani et al., 
2021, p. 123), making them extremely opaque. Further, the predominant focus of 
interpretability methodologies and initiatives for AI on single-purpose models presents a 
notable challenge in achieving explainability on FMs because FMs are models influencing 
an array of other downstream models. In healthcare, the ability to explain and interpret 
FMs will be critical for user acceptance, trust, and practice of evidence-based medicine. For 
instance, one study found that the ability to explain and interpret the decision-making 
process of AI-driven models significantly impacts a physician’s behavior towards AI, 
particularly their trust in the model and intent to use the technology (Liu et al., 2022). 
Another study highlights the impact of unexplainable models on patient-centeredness, 
implicating that opaque algorithms can effectively demote patients to “passive spectators 
in the medical decision-making process” (Amann et al., 2020, p. 8). 

While no significant laws currently govern AI in the United States, the General Data 
Protection Regulation (GDPR) passed by the European Union (EU) in 2018 includes a right-
to-explanation provision making it obligatory to explain an algorithm’s decision-making 
process (European Union, 2016). Most major US-based tech corporations must comply 
with this law as long as they have EU-based consumers, hence the recent emergence of 
cookie pop-ups on websites asking for consent to collect information. Similarly, the White 
House Office of Science and Technology Policy (OSTP) released an “AI Bill Of Rights” in 
2022 outlining five principles associated with the proper deployment of AI, including 
explaining an AI system’s functionalities in plain language. In 2023, the most 
comprehensive AI law was effectively passed in the EU—the AI Act. The law aims to 
address the risks associated with AI without constraining technological development.  

One provision of the AI Act allows developers access to “high-quality datasets within their 
respective fields” (European Union, 2022, p. 29). Enacting a similar law in the U.S. would 
pose difficulties due to existing privacy regulations within HIPAA. Consequently, Bak et al. 
predict the possibility of an overall AI ban in healthcare if developers cannot access private 
health information to test and explain models (2022). These significant regulatory 
movements indicate that the interpretability and explainability of AI systems will be an 
integral part of the ongoing discussion toward a comprehensive AI governance structure 
west of the Atlantic.  

AI and Equitable Care 

Fairness and bias in algorithms are central concerns in the development and 
implementation of AI models. Since most models are trained on real-world data, they often 
reflect inherent societal inequities. Numerous research studies have identified widespread 
biases in many algorithms deployed in different sectors and functions, including the 
criminal justice system (Van Dijck, 2022), child protective services (Keddell, 2019), and 
human resources (Tuffaha, 2023). In healthcare, a 2019 study focusing on racial bias in an 
algorithm found that black patients were identified to be at a much lower risk than white 
patients despite being in the same sickness level (Obermeyer et al., 2019). The study also 
found that the algorithm had assigned risk scores based on health expenditures accrued, 
which can be misleading if one group has substantially lower access and, thus, lower 
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utilization and spending. Further, the study found that risk scores for black patients would 
more than double if biases were removed. 

 In an AI-driven HCO, the provision of equitable healthcare may very well depend upon the 
leaders’ and developers’ understanding of systemic disparities in diverse patient 
populations. A Futurescan survey of healthcare executives found that only 12% of health 
systems fully understand the profiles of their patient populations (2023). Understanding 
the patient population’s economic, social, racial, and cultural backgrounds will be crucial in 
identifying algorithmic biases in future healthcare FMs. 

Developing a Robust AI Governance Program 

The 2023 Futurescan survey results on healthcare trends indicate that 28% of health 
systems anticipate being prepared to adopt systemwide AI models by 2028 to manage care 
delivery. However, while the regulatory landscape of AI remains unclear, the responsibility 
falls on HCOs to establish a robust organizational governance structure to oversee the 
development and implementation of the technology. This essay is a call to promote the use 
of the governance framework illustrated in Fig. 3 in HCOs, based on the Hourglass Model of 
AI Governance by Mäntymäki et al. (2022). The model depicted has been slightly adjusted 
to accommodate the distinct characteristics of a health system. The model consists of three 
fundamental layers: environmental, organizational, and operational/AI system layer.  

Fig. 3 FM Governance Structure 
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Environmental Layer 

Mäntymäki et al. define this layer as an organization’s 'contextual environment' (2022). 
Since there is no comprehensive legal framework for AI in the U.S., healthcare laws such as 
HIPAA constitute the most binding regulation within the environmental layer of an AI-
driven HCO. This layer also encompasses the ethical principles of AI that will guide the 
organization. Without hard AI laws, having an ethical framework that clearly defines the 
appropriate and inappropriate use of the technology is highly crucial. Floridi and Cowls 
identified an overarching framework for ethical AI, incorporating the four traditional 
principles of bioethics (beneficence, non-maleficence, autonomy, and justice), along with 
the addition of a fifth principle: explicability. Explicability aims to comprehend and hold 
accountable the decision-making processes of an AI model (Floridi & Cowls, 2021). 

Organizational Layer: Strategic Alignment 

The organizational layer details the HCO’s strategic AI initiative with a specific focus on the 
problem or opportunity that the technology is supposed to address. The strategic AI 
initiative must also align with the organization’s mission, vision, values, and goals and 
include a specific plan with detailed timelines and meaningful success measures. This 
strategic alignment ensures that the AI system will perform according to its intended 
purpose. 

Comprehensive Strategic Planning 

This technological venture involves defining clear, actionable objectives accompanied by 
specific, measurable outcomes. Through a comprehensive needs assessment, the strategic 
team must construct a roadmap that is realistic and attainable, clearly identifying not only 
the “what” and “why” but also the “how” and “when” of AI deployment. The organizational 
layer must also foster cross-departmental collaboration to ensure AI initiatives are well 
integrated across all facets of the HCO, from clinical care to administrative functions, 
ensuring that AI tools are developed and implemented with a holistic view of the 
organization’s needs, promoting synergies between departments and avoiding siloed 
efforts. 

Operational Layer: The AI System 

The operational layer or AI system is the bottom layer in the governance framework, which 
includes the core AI governance team. The governance team will be led by an AI executive, 
a leader who possesses specialized knowledge and expertise on the foundation model. In 
addition, officers or representatives from Risk Management, Compliance and Accreditation, 
and Diversity, Equity, and Inclusion (DEI) must comprise the rest of the core team. The core 
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governance team will play a pivotal role in managing and monitoring the AI system 
throughout its lifecycle. 

Core Operational Functions 

The core governance team will oversee several key functions essential in the successful 
deployment and management of AI systems. 

Risk Identification, Assessment, and Prioritization. This involves continuous 
monitoring of potential risks that AI systems may pose in both clinical and non-
clinical functions, from patient care to privacy and ethical concerns, and prioritizing 
them based on severity and likelihood.  

Policy Research and Recommendations. The core team will diligently monitor the 
changing landscape of AI guidelines, regulations, and best practices. The team will 
also be tasked with formulating policy recommendations that align with national 
standards and organizational objectives.  

Algorithmic Accountability. The team will ensure that the AI system operates 
transparently and accountably, with a mechanism in place to review and audit AI-
driven decisions. 

Developer Engagement 

A critical aspect of the operational layer’s functions is its interaction with AI developers. 
This two-way interaction involves working with developers to proactively identify and 
eliminate biases within the system before they impact patient care and operations. Should 
biases be detected post-implementation, the operational layer coordinates with developers 
to address and resolve these issues swiftly. 

Conclusion 

Foundation Models offer innovative solutions to longstanding healthcare problems in 
clinical and nonclinical functions, potentially optimizing an HCO’s overall organizational 
performance. However, the understanding of this technology’s potential impact on 
healthcare operations and patient care remains limited. Due to the lack of comprehensive 
regulatory oversight, HCOs must meticulously approach the adoption of FMs, which must 
be paired with a robust organizational governance structure and a core governance team to 
ensure trustworthy, ethical, and patient-centered AI use.  

The risks addressed in the integration of FMs in healthcare primarily include privacy 
breaches, security vulnerabilities, model opacity, and algorithmic biases. These risks 
encompass the potential for unauthorized access to sensitive data, manipulation of AI 
systems by malicious actors, unexplainable decision-making processes, and the 
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perpetuation of existing societal disparities through biased datasets and algorithms. Each 
of these risks significantly impacts patient safety, the trustworthiness of AI-enabled 
applications, and the ethical integrity of care delivery. To address these challenges, this 
essay advocates for the implementation of a multilayered governance model that 
collectively ensures a balanced and holistic governance approach. 
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